Computation of the GCD of two random integers having 500 decimal digits with the standard Euclidean algorithm and with the IGCD function of the fnx.BigInts.pas unit.
Random A -------- 6465386194 0392739870 9198319667 3246507606 0046889571 6006011730 2132585584 4507776282 6665114346 0224647579 1240640593 1114146322 1245899857 8728365881 5873248518 1039333611 9099091716 8248496201 6509396641 9852698853 9873857102 9432865850 8084944701 7001636717 9405977047 6771503126 9973795451 9408715187 3926682979 6605232681 3233734627 2941670050 5972852760 1671496274 5938751117 9227024212 3123952587 5976547792 8740715617 3827104164 3604876937 8709036145 7091362967 3830143743 4941820235 3679637082 1153873254 0062309853 2179877370 0596304026 Random B -------- 9761542434 9645587244 2805074748 9431092204 9484785945 4135792436 0944993627 9111686596 5730746863 0087018745 0120293246 7679598905 1448836533 1984145413 5864704541 2202766576 6141481922 8303785012 5204712654 9575397016 3158946055 8692960377 3095609558 1429830945 2640994334 9453951249 3169096534 7726951455 9511644315 8097709601 0538354518 6388579199 2682726883 6009776095 6089017624 2042830394 2203948383 7716063641 2633954715 4358623334 0593130148 7815856586 5509388516 7484856890 6023806016 4424153012 8811499556 7473699638 5112786376 2454168884 GCD(A,B) #1 = 6 GCD(A,B) #2 = 6 Check (GCD #1 = GCD #2) : OK Running times (milliseconds) ---------------------------- GCD #1 = 0.589 GCD #2 = 0.047






Sorry, this part cannot be displayed on small screens!